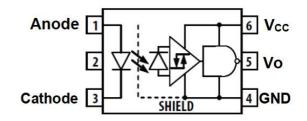


### ■ Features

- Inverted output type (totem pole output)
- Truth Table Guaranteed: VCC from 4.5V to 30V
- Performance Specified for Common IPM Applications Over Industrial Temperature Range.
- Short Maximum Propagation Delays
- Minimized Pulse Width Distortion (PWD)
- Very High Common Mode Rejection (CMR)
- Hysteresis
- Available in Stretched SO-6 Package
- MSL class 1
- Regulatory Approvals
  - UL UL1577
  - VDE EN60747-5-5
  - CQC GB4943.1-2011

**Description** 


The MPH481 series fast speed photocoupler contains a LED and photo detector with built-in Schmitt trigger to provide logic-compatible waveforms, eliminating the need for additional wave shaping. The totem pole output eliminates the need for a pull up resistor and allows for direct drive Intelligent Power Module or gate drive.

Minimized propagation delay difference between devices makes these optocouplers excellent solutions for improving inverter efficiency through reduced switching dead time.

### Applications

- IPM Interface Isolation
- Isolated IGBT/Power MOSFET gate drive
- Industrial Inverter
- AC and Brushless DC motor drives
- General Digital Isolation

## Schematic





| TURTH TABLE |      |  |  |
|-------------|------|--|--|
| LED         | OUT  |  |  |
| ON          | Low  |  |  |
| OFF         | High |  |  |

Note: A 0.1µF bypass capacitor must be connected between Pin 4 and 6.

| ABSOLUTE MAXIMUM RATINGS        |                |      |      |      |      |
|---------------------------------|----------------|------|------|------|------|
| PARAMETER                       | SYMBOL         | MIN. | MAX. | UNIT | NOTE |
| Average Forward Current         | l <sub>F</sub> | -    | 20   | mA   |      |
| Reverse Input Voltage           | V <sub>R</sub> | -    | 5    | V    |      |
| Total Package Power Dissipation | P <sub>T</sub> | -    | 145  | mW   |      |
| Supply Voltage                  | Vcc            | 0    | 35   | V    |      |
| Output Voltage                  | Vo             | -0.5 | Vcc  | V    |      |
| Output Collector Current        | Io             | -    | 50   | mA   |      |
| Isolation Voltage               | Viso           | 5000 | -    | Vrms |      |
| Operating Temperature           | Topr           | -40  | 110  | °C   |      |
| Output IC Junction Temperature  | TJ             | -    | 125  | °C   |      |
| Storage Temperature             | Tstg           | -55  | 125  | °C   |      |
| Soldering Temperature           | Tsol           | -    | 260  | °C   |      |

**Note:** A ceramic capacitor  $(0.1 \, \mu F)$  should be connected between pin 6 and pin 4 to stabilize the operation of a high gain linear amplifier. Otherwise, this Photocoupler may not switch properly. The bypass capacitor should be placed within 1 cm of each pin.

| RECOMMENDED OPERATION CONDITIONS |                     |      |      |      |
|----------------------------------|---------------------|------|------|------|
| PARAMETER                        | SYMBOL              | MIN. | MAX. | UNIT |
| Operating Temperature            | T <sub>A</sub>      | -40  | 110  | °C   |
| Supply Voltage <sup>1</sup>      | Vcc                 | 4.5  | 30   | V    |
| Input Current(ON) <sup>2</sup>   | I <sub>F(ON)</sub>  | 1.6  | 5    | mA   |
| Input Voltage(OFF)               | V <sub>F(OFF)</sub> | -    | 0.8  | V    |

**Note 1:** Detector requires a  $V_{CC}$  of 4.5 V or higher for stable operation as output might be unstable if  $V_{CC}$  is lower than 4.5 V. Be sure to check the power ON/OFF operation other than the supply current.

**Note 2:** The initial switching threshold is 1.6 mA or less. It is recommended that 2.2 mA be used to permit at least a 20% LED degradation guard band.



| EL                                               | ELECTRICAL OPTICAL CHARACTERISTICS |                   |                   |       |        |                                                              |                |
|--------------------------------------------------|------------------------------------|-------------------|-------------------|-------|--------|--------------------------------------------------------------|----------------|
| PARAMETER                                        | SYMBOL                             | MIN.              | TYP.              | MAX.  | UNIT   | TEST CONDITION                                               | NOTE           |
|                                                  | INPUT CHARACTERISTICS              |                   |                   |       |        |                                                              |                |
| Forward Voltage                                  | V <sub>F</sub>                     | 1.6               | 2.0               | 2.4   | V      | I <sub>F</sub> =10mA                                         |                |
| Input Forward Voltage<br>Temperature Coefficient | $\Delta V_F / \Delta T$            | -                 | -1.237            | -     | mV/°C  | I <sub>F</sub> =10mA                                         |                |
| Input Reverse Voltage                            | $BV_R$                             | 5                 | -                 | -     | V      | I <sub>R</sub> =10µA                                         |                |
| Input Threshold Current (Low to High)            | I <sub>FLH</sub>                   | -                 | 0.25              | 1.5   | mA     | V <sub>CC</sub> =30V,V <sub>O</sub> >5V                      |                |
| Input Threshold Voltage (High to Low)            | V <sub>FHL</sub>                   | 0.8               | -                 | -     | V      | V <sub>CC</sub> =30V,V <sub>O</sub> <5V                      |                |
| Input Capacitance                                | C <sub>IN</sub>                    | -                 | 60                | -     | pF     | V <sub>F</sub> =0, f=1kHz                                    | 2              |
|                                                  | 0                                  | UTPUT             | Γ CHAR            | RACTE | RISTIC | S                                                            |                |
| High Level                                       |                                    | -                 | -                 | 3.0   | mA     | V <sub>CC</sub> =5.5V,V <sub>F</sub> =0V,I <sub>O</sub> =0mA |                |
| Supply Current                                   | Іссн                               | -                 | 1.9               | 3.0   | mA     | V <sub>CC</sub> =30V,V <sub>F</sub> =0V,I <sub>O</sub> =0mA  |                |
| Low Level                                        | I <sub>CCL</sub>                   | _                 | -                 | 3.0   | mA     | $V_{CC}$ =5.5 $V$ , $I_F$ =5 $mA$ , $I_O$ =0 $mA$            |                |
| Supply Current                                   | ICCL                               | -                 | 2.0               | 3.0   | mA     | $V_{CC}$ =30V, $I_F$ =5mA, $I_O$ =0mA                        |                |
| High Level                                       | Іон                                | -                 | -                 | -160  | mA     | $V_{CC}$ =5.5V, $V_F$ =0V, $V_O$ =GND                        | _ <sub>1</sub> |
| Output Current                                   | IOH                                |                   |                   | -200  | mA     | V <sub>CC</sub> =20V,V <sub>F</sub> =0V,V <sub>O</sub> =GND  | '              |
| Low Level                                        | 1-                                 | 160               | -                 | -     | mA     | V <sub>O</sub> =V <sub>CC</sub> =5.5V,I <sub>F</sub> =5mA    | 1              |
| Output Current                                   | l <sub>OL</sub>                    | 200               | -                 | -     | mA     | V <sub>O</sub> =V <sub>CC</sub> =20V,I <sub>F</sub> =5mA     | I              |
| High Level<br>Output Voltage                     | V <sub>OH</sub>                    | V <sub>CC</sub> - | V <sub>CC</sub> - | -     | V      | I <sub>OL</sub> =-6.5mA                                      |                |
| Low Level<br>Output Voltage                      | V <sub>OL</sub>                    | -                 | 0.09              | 0.5   | V      | I <sub>OL</sub> =6.5mA                                       |                |

Specified over recommended temperature ( $T_A$  = -40°C to +110°C, +4.5V  $\leq$  V<sub>CC</sub>  $\leq$  30V), I<sub>F(ON)</sub> = 1.6mA to 5mA, V<sub>F(OFF)</sub> = 0V to 0.8V, unless otherwise specified. All typicals at  $T_A$  = 25°C.

Note 1: Duration of output short circuit time should not exceed 500  $\mu s$ .

Note 2: Input capacitance is measured between pin 1 and pin 3.



| SWITCHING SPECIFICATION                                  |                                              |      |      |      |       |                                                                                             |      |
|----------------------------------------------------------|----------------------------------------------|------|------|------|-------|---------------------------------------------------------------------------------------------|------|
| PARAMETER                                                | SYMBOL                                       | MIN. | TYP. | MAX. | UNIT  | TEST CONDITION                                                                              | NOTE |
|                                                          | SWITCHING CHARACTERISTICS                    |      |      |      |       |                                                                                             |      |
| Propagation Delay Time to Output Low Level               | t <sub>PHL</sub>                             | -    | 90   | 220  | ns    |                                                                                             | 1    |
| Propagation Delay Time to Output High Level              | t <sub>PLH</sub>                             | -    | 110  | 220  | ns    | f=10kHz,                                                                                    | 1    |
| Pulse Width Distortion                                   | PWD                                          | -    | 20   | 120  | ns    | Duty Cycle=50%,                                                                             | 2    |
| Propagation Delay<br>Difference Between Any<br>Two Parts | PDD<br>(t <sub>PHL</sub> -t <sub>PLH</sub> ) | -200 | -    | +200 | ns    | I <sub>F</sub> =2mA,<br>V <sub>CC</sub> =30V                                                | 3    |
| Rise Time                                                | t <sub>r</sub>                               | -    | 6    | -    | ns    |                                                                                             |      |
| Fall Time                                                | t <sub>f</sub>                               | -    | 7    | -    | ns    |                                                                                             |      |
| Common Mode Transient<br>Immunity at Logic High          | СМн                                          | 20   | -    | -    | kV/µs | $V_F=0V,V_{CC}=5V,$ $T_A=25^{\circ}C,$ $V_{CM}=1.5kV$                                       | 4    |
| Common Mode Transient<br>Immunity at Logic Low           | CML                                          | 20   | -    | -    | kV/μs | I <sub>F</sub> =4mA,V <sub>CC</sub> =5V,<br>T <sub>A</sub> =25°C,<br>V <sub>CM</sub> =1.5kV | 4    |

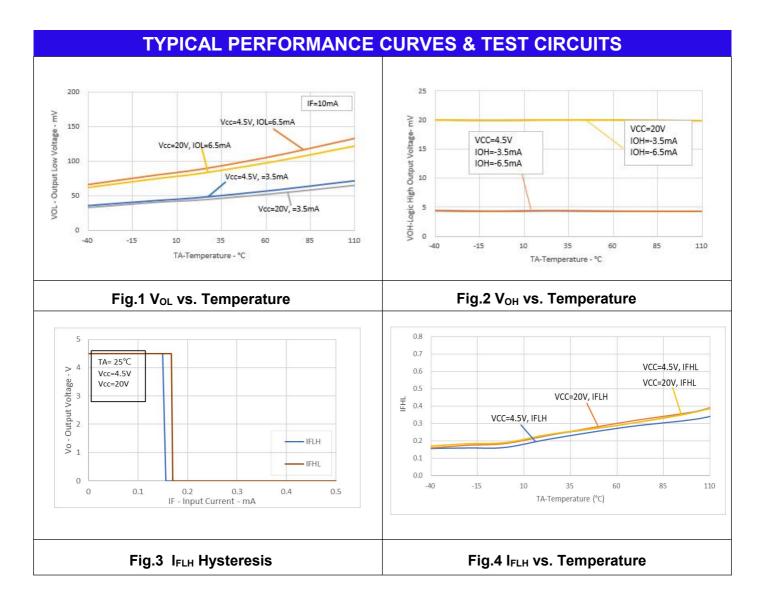
Over recommended operating conditions  $T_A$  = -40° C to 105° C,  $V_{CC}$  = +4.5 V to 30 V,  $I_{F(ON)}$  = 1.6 mA to 5 mA,  $V_{F(OFF)}$  = 0 V to 0.8 V,unless otherwise specified. All typicals at  $T_A$  = 25°C.

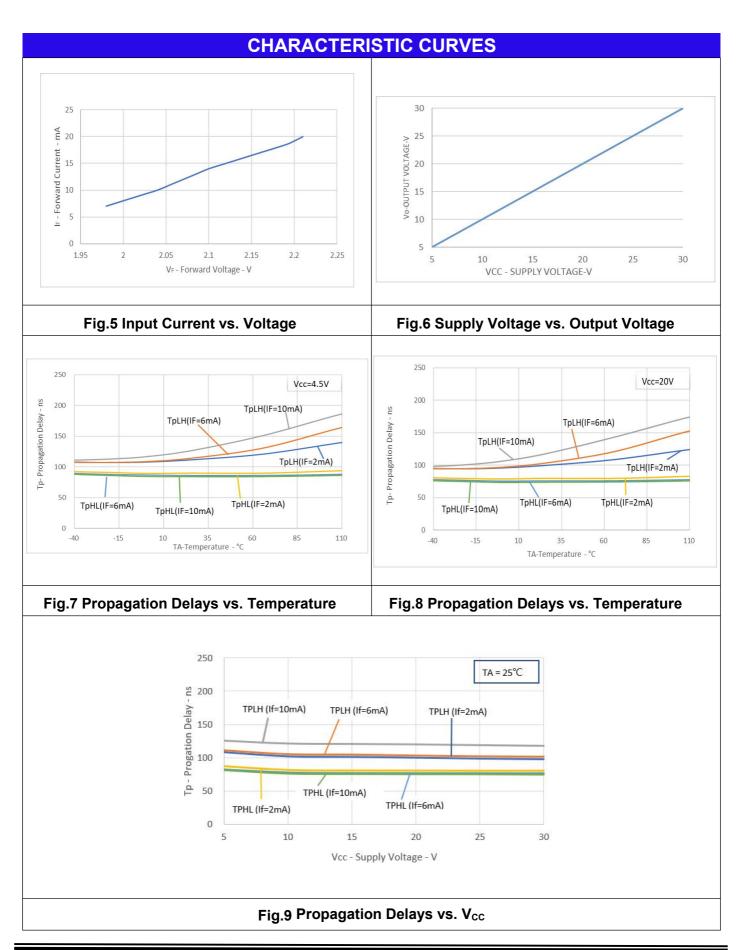
**Note 1:** The tPLH propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The tPHL propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.

Note 2: Pulse Width Distortion (PWD) is defined as |tPHL - tPLH | for any given device.

**Note 3:** The difference of tPLH and tPHL between any two devices under the same test condition.

**Note 4:** CMH is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state,  $V_0 > 2.0$  V. CML is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state,  $V_0 < 0.8$  V. Note: Equal value split resistors (Rin/2) must be used at both ends of the LED.





| ISOLATION CHARACTERISTIC             |                  |      |                  |      |      |                                           |      |
|--------------------------------------|------------------|------|------------------|------|------|-------------------------------------------|------|
| PARAMETER                            | SYMBOL           | MIN. | TYP.             | MAX. | UNIT | TEST CONDITION                            | NOTE |
| Withstand Insulation<br>Test Voltage | V <sub>ISO</sub> | 5000 | -                | _    | V    | RH≤40~60%,<br>t=1min,T <sub>A</sub> =25°C | 1,2  |
| Input-Output<br>Resistance           | R <sub>I-O</sub> | -    | 10 <sup>12</sup> | -    | Ω    | V <sub>I-O</sub> =500V DC                 | 1    |

All Typical values at TA = 25°C

**Note 1:** Device is considered a two terminal device: pins 1, 2, 3 are shorted together and pins 4, 5, 6 are shorted together.

**Note 2:** According to UL1577, each photocoupler is tested by applying an insulation test voltage 6000VRMS for one second. This test is performed before the 100% production test for partial discharge.







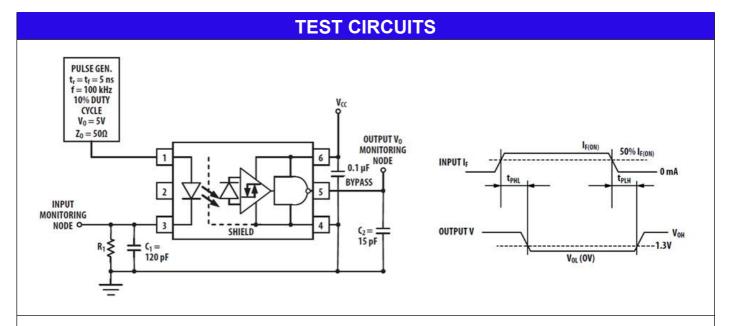
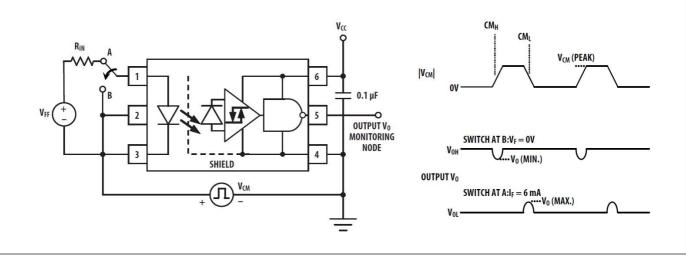
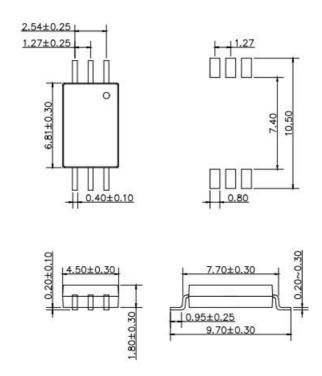
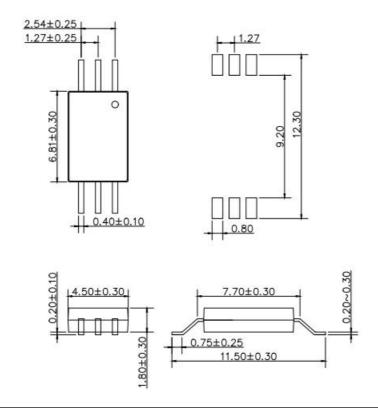



Fig.10 Test Circuit for tPLH、tPHL、tr and tf





Fig.11 Common Mode Transient Immunity Test Circuit and Typical Waveforms

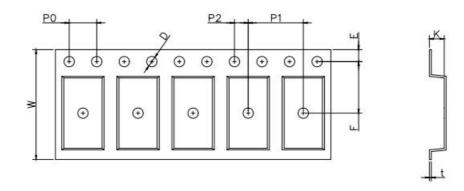



## PACKAGE DIMENSIONS (Dimensions in mm unless otherwise stated)

### **Surface Mount Lead Forming**

## P type Dimension

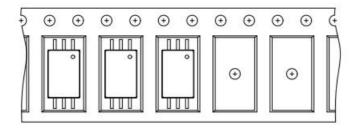



## W type Dimension



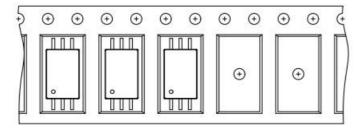


## TAPING DIMENSIONS (Dimensions in mm unless otherwise stated)


## **Taping Dimensions**



| Dimension Symbol         | D       | E        | F        | P0      | P1      | P2      | t       | W        | K        |
|--------------------------|---------|----------|----------|---------|---------|---------|---------|----------|----------|
| P type<br>Dimension (mm) | 1.5±0.1 | 1.75±0.1 | 7.5±0.1  | 4.0±0.1 | 8.0±0.1 | 2.0±0.1 | 0.3±0.1 | 16.0±0.3 | 2.15±0.1 |
| W type<br>Dimension (mm) | 1.5±0.1 | 1.75±0.1 | 11.5±0.1 | 4.0±0.1 | 8.0±0.1 | 2.0±0.1 | 0.3±0.1 | 24.0±0.3 | 2.52±0.1 |


Tape & Reel Packing Specifications

### Option T1





Option T2







## ORDERING AND MARKING INFORMATION

#### **MARKING INFORMATION**



MP : Company Abbr.

H: High performance Photocoupler

481 : Part Number

P/W : Lead Form Option

V : VDE Identification(Option)

Y: Year date code

H : Factory identification mark

WW : 2-digit work week

### **ORDERING INFORMATION**

## MPH481(P/W)-VZ

MP- Company Abbr.

H – High performance Photocoupler

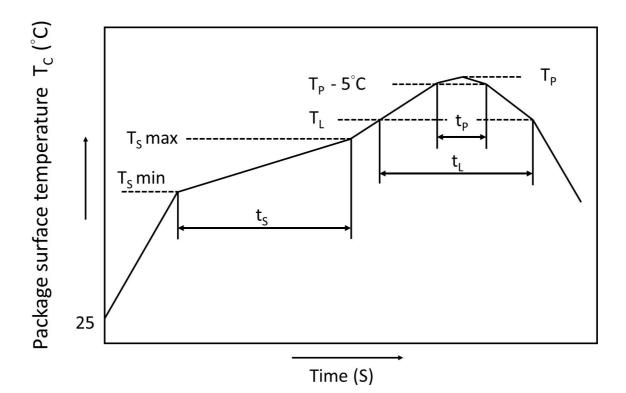
481 - Part Number

P/W – Lead Form Option(P-9mm Clearance or W-11mm Clearance)

V - VDE Option (V or None)

Z – Tape and Reel Option (T1/T2)

## **Packing Quantity**


| Option | Description                                       | Quantity        |
|--------|---------------------------------------------------|-----------------|
| P(T1)  | Surface Mount Lead Forming – With Option 1 Taping | 3000 Units/Reel |
| P(T2)  | Surface Mount Lead Forming – With Option 2 Taping | 3000 Units/Reel |
| W(T1)  | Surface Mount Lead Forming – With Option 1 Taping | 3000 Units/Reel |
| W(T2)  | Surface Mount Lead Forming – With Option 2 Taping | 3000 Units/Reel |

## **REFLOW INFORMATION**

### **REFLOW PROFILE**

## IR Reflow soldering

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.



|                                                                                     | Symbol | Min. | Max. | Unit |
|-------------------------------------------------------------------------------------|--------|------|------|------|
| Preheat temperature                                                                 | Ts     | 150  | 200  | °C   |
| Preheat time                                                                        | ts     | 60   | 120  | S    |
| Ramp-up rate (T∟to T <sub>P</sub> )                                                 |        |      | 3    | °C/s |
| Liquidus temperature                                                                | TL     | 21   | 7    | °C   |
| Time above T∟                                                                       | t∟     | 60   | 100  | S    |
| Peak Temperature                                                                    | Тр     |      | 260  | °C   |
| Time during which T <sub>C</sub> is between (T <sub>P</sub> - 5) and T <sub>P</sub> | t⊳     |      | 20   | s    |
| Ramp-down rate                                                                      |        |      | 6    | °C/s |



### **DISCLAIMER**

- Our company is continually improving the quality, reliability, function and design. Our company reserves the right to make changes without further notices.
- The characteristic curves shown in this datasheet are representing typical performance which are not guaranteed.
- This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or lifesaving applications or any other application which can result in human injury or death.
- Immerge unit's body in solder paste is not recommended.
- Discoloration might be occurred on the package surface after soldering, reflow or longtime use. It neither impacts the performance nor reliability.

## Revision History

| Version | Date       | Subjects (major changes since last revision) |  |  |  |  |
|---------|------------|----------------------------------------------|--|--|--|--|
| 1.0     | 2022-07-22 | Datasheet Complete                           |  |  |  |  |
|         |            |                                              |  |  |  |  |